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We have refrained from value judgments such as "good" or 
"better than" in discussing both the classifiers and the evalu-
ators. The actual characteristics which make a classifier 
suitable for a particular application may depend on the ap­
plication itself, as, for example, when the penalty associated 
with misclassification of a class member is not the same as for 
misclassification of a nonmember.24 Although the percent 
correct prediction should probably be abandoned as a measure 
of the performance of binary classifiers, the other measures 
discussed can be useful in developing a total picture of relative 
and absolute classifier performance. 
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Recently, Stonham et al.7-8 have described the machine 
recognition of chemical classes from a limited group of mass 
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Figure 1. Stages in the pattern recognition process. 

spectra using a method which is less abstract than those re­
ferred to above. Their approach, based on the adaptive digital 
learning network, stems from the work of Bledsoe and 
Browning on «-tuple sampling for pattern recognition.9 The 
initial reports7'8 indicated that this approach might be signif­
icantly superior to the use of pattern classifiers of the kind 
previously applied to chemical data. 

As Uhr points out,10 the two most basic processes in pattern 
recognition may be thought of as characterization of the un­
known pattern and classification of the unknown pattern (see 
Figure 1). In the linear discriminant and k nearest neighbor 
methods, a pattern is characterized simply as a geometric point 
in n + 1-dimensional space (where n is the number of features 
comprising the pattern). In contrast, n-tuple sampling char­
acterizes a pattern by analyzing it into subpattern units of n 
features each (where n is the n-tuple parameter, which may 
range from one to the total number of features, but has typi­
cally been in the range of 2 to 10). Each of these n feature 
subpatterns is associated with one portion of a template which 
is used in the classification process. Uhr has observed that 
modifications of this approach can be suggestive of a variety 
of plausible biological pattern recognition processes.1' 

In the classification stage, the linear discriminant function 
method depends on the existence of an n-dimensional hyper-
plane, which divides the n + 1-dimensional pattern space into 
two regions. A pattern is classified according to whether the 
point which characterizes it lies on one or the other side of this 
decision hyperplane. Since the hyperplane effects a strictly 
binary classification, a multicategory classifier constructed 
in this way will employ several hyperplanes. The adaptive 
digital network, in contrast, employs a template for each cat­
egory. The pattern, characterized by its collection of n-tuples, 
is compared against each template and is assigned to the cat­
egory whose template it matches most closely. 

"Learning" or "training" (depending on one's educational 
philosophy) is the process by which the hyperplanes or the 
templates are developed from collections of patterns of known 
identity. Although numerous methods for developing hyper­
planes have been advanced,12 the simplest is the error correc­
tion feedback method,3 which has been employed in the ma­
jority of chemical pattern recognition experiments. In this 
method, one begins with an arbitrary hyperplane and attempts 
to classify known patterns with it. Each time the hyperplane 
incorrectly classifies a pattern, the hyperplane is moved in its 
space so as to classify that pattern correctly. Application of 
linear programming techniques can give an improved hyper­
plane for any particular set of inseparable training data.17 

Training a template in the digital learning network method 
consists of submitting known patterns to an initially blank 
template. Those portions of the template corresponding to 
n-tuple subpatterns present in the training patterns are, in 
effect, "colored in" (see Appendix A). 

Previous Work with Digital Learning Networks (DLNs) 

Attention has been drawn to the need for objective criteria 
in evaluating the performance of pattern classifiers.13'14 At the 
very least, a clear distinction must be made between the ability 
of a classifier to correctly classify patterns which were used in 
training (recognition) and the ability to classify patterns which 
were not present in the training set (prediction). For binary 
classifiers, where the classification is "class member" vs. 
"nonmember", it has been shown14 that the commonly used 
"percent correct classifications" (number of patterns correctly 
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Table I. The 440-Compound Data Set of Stonham and Co­
workers7'8 

Category no. Compd class No. of spectra 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Methyl esters 
Methyl ketones 
Carboxylic acids 
Ethyl esters 
Higher esters, n = 4, 5, 6 
Normal alcohols 
Aldehydes 
Higher ketones 
Secondary alcohols 
Substituted alcohols 
Diesters 
Substituted keto acids 
1-Phenyl alkanes 
Terpenes 
//-Phenyl alkanes, n ^ 1 
Aliphatic amines 
Mercaptans 
Sulfides 
Straight-chain alkenes 
Alkanes 
Nitriles 
Alkynes 
Substituted pyrazines 
Substituted phenols 
Furans 
Pyrroles 
Thiophenes 
Aromatic esters 

29 
11 
11 
12 
13 
33 
8 

10 
29 
14 
14 
8 

10 
18 
12 
22 
13 
12 
14 
34 

7 
24 
6 

19 
8 
9 

27 
13 

classified divided by the total number of patterns in the test set) 
is inadequate as the single measure of performance, since this 
quantity depends on the distribution of patterns between class 
members and nonmembers. For a multicategory classifier, 
however, with which each pattern is assigned a definite class 
membership, the percent correct classification is a meaningful 
measure of overall performance, as long as recognition and 
prediction performances are kept separate. 

Using the percent correct classification as a measure, we 
may examine the performance of digital learning network 
classifiers in their most challenging chemical test prior to this 
work. Stonham et al. assembled a collection of 440 mass 
spectra of organic compounds, which they divided into 28 
rather specific chemical classes.8 These classes are listed in 
Table I. The spectra (360) were used to train the 28 templates 
by means of the "optimum training sequence" procedure de­
scribed by those authors.78 In this procedure, those compounds 
least well recognized by a template are successively singled out 
for inclusion in the training set; this approach attempts to in­
sure that the training set is representative of the particular 
compound class in question, but does not include unnecessary 
(and possibly misleading) information. In their experiment, 
the percent correct recognition of the 360 training compounds 
was 100% and the percent correct prediction of the 80 com­
pounds not present in the training set was 97.5%. 

The Data Set 

As part of our program to develop a generally applicable 
on-line pattern recognition system for inclusion with com­
puter-controlled mass spectral or nuclear magnetic resonance 
installations, we have explored the adaptive digital network 
as an alternative to the linear discriminant functions which 
have been our primary focus. In attempting to make our testing 
representative of the problem environment which would be 
encountered in an analytical laboratory, it has been our policy 
to utilize large data sets and to avoid careful preselection of 
data for pattern recognition experiments. Thus, for the present 
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Table II. The 1252-Compound Data Set 

gory no. Compd class 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Arenes 
Aldehydes and ketones 
Ethers 
Aliphatic alcohols 
Phenols 
Carboxylic acids 
Thiols 
Esters 
Amines 
Amides 
Nitriles 

No. of spectra 

249 
96 

103 
185 
84 
51 

135 
125 
131 
56 
37 

study we assembled a data set of 1252 mass spectra, comprising 
11 rather broad chemical classes, by picking spectra sequen­
tially from our file of 18 806 spectra.15 Polyfunctional com­
pounds were not avoided, although compounds which would 
have belonged to two or more of the 11 classes were discard­
ed.16 The 11 chemical classes are shown in Table II. 

Implementation of the DLN Classifiers 

Although the adaptive linear network concept lends itself 
to implementation in semiconductor hardware, as emphasized 
by Stonham et al.,7'8 we have employed a software simulation 
of the network in our experiments. Our program was written 
in Fortran IV and was run on an IBM 360/65 computer. A 
flow chart of our procedure is given in Appendix B and a de­
scription of the training and classification algorithms is given 
in Appendix A. Particular importance attaches to the array 
which is used to represent the memory of the digital learning 
network. In our experiments, this array was in some cases de­
clared to be LOGICAL, constraining the contents to be "0" 's 
and " 1 " 's; this configuration mirrors the character of the 
hardware digital learning net. In other cases, the memory array 
was declared to be INTEGER, so that repeated "hits" in a 
particular region of the template would accumulate, rather 
than producing no additional effect as with the LOGICAL array. 
Although this modification precludes the straightforward 
hardware implementation of the digital learning network 
originally envisioned, the INTEGER array version has led to 
some insights regarding the characteristics and limitations of 
the DLN as a chemical pattern recognizer. 

Training a DLN template differs significantly from training 
a hyperplane discriminant function. The set of training com­
pounds selected for training a hyperplane is generally chosen 
on the basis of availability. Some attention may be given to 
selecting compounds likely to be representative of the partic­
ular category of interest, but, in general, the more training 
compounds used, the better the classifier will perform in pre­
diction tests. The training set must contain both compounds 
belonging to the category in question and a roughly similar 
number of compounds not belonging to that category. Also, 
at least a 3/1 ratio of patterns to descriptors/pattern is required 
to ensure meaningful experiments. 

In contrast, the training set for a DLN template contains 
only compounds belonging to the category to be represented 
by the template. 

Evaluation of DLN Classifiers 

Tables III and IV summarize the percent correct prediction 
values for the various DLN classifiers developed in this study. 
These values are meaningful for comparisons among multi-
category classifiers developed under various conditions, al­
though they will not be suitable for subsequent comparisons 

with binary hyperplane classifiers.14 The results in Table III 
illustrate the dilemma which is encountered in training a DLN 
based on a LOGICAL memory array. For small numbers of 
training compounds, the recognition ability of the classifier, 
not surprisingly, is very good. The predictive performance is 
moderately good; indeed, the ability to achieve nontrivial 
prediction performance with minimal training seems to be a 
characteristic of the DLN method. 

However, as increasing numbers of training compounds are 
employed in order to incorporate more information in the 
classifier, the recognition performance falls off rapidly. This 
effect results from "blurring" of the templates by spurious 
peaks in the spectra and from "overgeneralization" as de­
scribed by Stonham et al. Since the LOGICAL or binary 
memory array contains only "0" 's and " 1 " 's and there is no 
mechanism for erasing " 1 " 's, spurious or infrequent peaks in 
the training compounds will contribute as much to the char­
acter of the template as will highly characteristic peaks. Thus, 
as more training is incorporated, a DLN classifier begins to 
give high responses for compounds which are not in fact 
members of the class represented by that particular tem­
plate. 

In the task of prediction, as opposed to recognition, extra 
training improves the DLN performance up to a point. Pre­
sumably, this effect arises because the templates have been 
exposed to a more diverse population in training. Here too, 
however, overtraining finally begins to produce difficulty in 
discriminating categories and the performance falls off. 

Stonham et al. have suggested that the problem of over­
training can be dealt with by carefully optimizing the training 
procedure, selecting for training only enough compounds to 
give a desired level of recognition performance, and by 
choosing these compounds to be those which are least well 
recognized, presumably ensuring that the templates will have 
as diverse as possible training experience.7'8 However, our tests 
with a larger, more general mass spectral data set show that 
the "optimum training sequence" strategy does not necessarily 
have the desired effect. Included in Table III are the perfor­
mances of learning networks trained using the "optimum 
training sequence" strategy.7,8 In order to train the individual 
classifiers to a maximum response of 128,467 training patterns 
were required. Evidently, the capability of the classifiers for 
identifying the remaining 785 compounds was not optimized 
by this procedure, since training with a randomly chosen group 
of 467 compounds (distributed among the 11 categories in 
proportion to the actual numbers of compounds in those 
categories) produced substantially better predictive perfor­
mance. Examination of the errors made by the classifiers 
trained in this manner showed evidence of overtraining: nu­
merous patterns achieved maximum response (=128) in more 
than one category. Several patterns scored 128 in seven or more 
categories. In order to reduce the overtraining problem, an­
other set of templates was trained using the "optimum training 
sequence", with training to a response of 120 rather than 128. 
This level of training required only 144 training patterns, in 
contrast with the 467 training patterns required to achieve 
responses of 128; it is not surprising that the extensive extra 
training required to achieve maximum response would also 
tend to overgeneralize the templates and thereby reduce their 
discrimination. The reduced training did indeed improve the 
performance of the classifiers relative to the 467-pattern 
"optimum" training set, as seen in Table III. However, the 
performance was still not as good as that achieved with a 
comparable number of randomly selected training com­
pounds. 

As an alternative approach to the problem of overtraining, 
we have experimented with an INTEGER memory array, as 
mentioned earlier. With the INTEGER memory array, a n-tuple 
subpattern appearing frequently among the training patterns 
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Table III. Overall DLN Performance: LOGICAL Memory Array" 
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"Optimum training sequence" 

Patterns in Randomly selected training set Response = 128 Response = 120 
training set Recognition Prediction* Recognition Prediction Recognition Prediction 

64 100% 59% 
128 98% 64% 
144 95% 63% 99% 56% 
302 89% 62% 
467 82% 59% 84% 48% 
604 73% 54% 
927 65% 55% 

a Values given are percent of patterns classified correctly. * For prediction, the number of patterns in the test set is 1252 minus the number 
in the training set. 

Table IV. Overall DLN Performance: INTEGER Memory Array0 

"Optimum training sequence" 

Patterns in Randomly selected training set Response =128 Response = 120 
training set Recognition Prediction* Recognition ~^ Prediction Recognition Prediction 

64 80% 41% 
128 76% 57% 
144 77% 56% 76% 38% 
302 76% 65% 
467 76% 67% 64% 58% 
604 69% 66% 
927 71% 65% 

a Values given are percent of patterns classified correctly. * For prediction, the number of patterns in the test set is 1252 minus the number 
in the training set. 

is expected to have a greater effect ("to make more of an im­
pression") upon the template than an infrequently occurring 
subpattern. Thus, one would hope to minimize the undesirable 
effect of spurious or highly individual features in the training 
process. 

Table IV summarizes the performance of DLNs employing 
INTEGER memory arrays. These trials are based on the same 
training sets used in testing the LOGICAL array-based classi­
fiers. As anticipated, the INTEGER memory array seems less 
susceptible to overtraining than the LOGICAL array. Addi­
tional training of DLNs employing INTEGER memory arrays 
produced improved predictive performance until about 500 
compounds had been employed in training. For DLNs based 
on LOGICAL memory arrays, performance began to suffer after 
about one-fourth as much training. However, it is also apparent 
that the LOGICAL array-based DLNs performed nearly as well 
after relatively little training (128 training patterns) as did the 
INTEGER array-based DLNs after much more extensive 
training (467 training patterns). This observation further 
supports the idea that the ability to perform well with little 
training is a characteristic of DLN classifiers. It must be noted 
that, with both types of memory array, the randomly chosen 
training set produced a better multicategory classifier than did 
the "optimum training sequence" strategy. 

The multicategory classifier under consideration here con­
sists of a set of templates, one template for each functional 
group category. Since it is not necessarily the case that all 
templates are equally effective, it is of interest to consider the 
classifier's performance on individual categories. This analysis 
is conveniently performed by reference to the "figure of merit", 
M, based on the information gain13'14 contributed by a clas­
sifier. For this purpose, we consider the multicategory classifier 
to be an adjustable binary classifier and examine its perfor­
mance on individual pattern categories.14 

The performances on individual categories are summarized 

in Tables V and VI. Examination of these data reveals varia­
tions among the categories not evident from the overall per­
formance data in Tables III and IV. With a LOGICAL memory 
array as the classifier template medium (Table III), perfor­
mance on category 1 patterns improves up to about 144 
training compounds and then begins to fall off. Although this 
same tendency to display a performance peak is more or less 
evident for categories 1, 2, 3, 5,7,9, and 11, this is not the case, 
for example, for category 4, which shows decreased perfor­
mance for training beyond 64 patterns, nor for category 6, for 
which performance appears virtually unaffected by various 
amounts of training. Performance on categories 8 and 10 
fluctuates erratically as training is increased, indicating a 
dependence more on the identities of the training compounds 
than on their numbers. Furthermore, those categories showing 
peaks of performance do not all peak at the same level of 
training. When performance on individual categories is ex­
amined, it is seen that the "optimum training sequence" 
strategy does indeed produce superior results for some cate­
gories (5, 6, 7, 10, and 11), but not for others. 

A similar picture emerges from the figure of merit data on 
INTEGER array-based DLN classifiers (Table VI). Significant 
variation in behavior among the categories is apparent. Per­
formance on categories 2, 4, 5, 8, and 11 improves as originally 
postulated for the INTEGER memory array, increasing per­
formance with increasing training without the impairment of 
overtraining and reaching a higher level of performance than 
the corresponding LOGICAL array classifiers. For categories 
1, 3, and 7, however, performance of the INTEGER array-based 
classifiers is worse than that of the LOGICAL array-based 
classifiers. Fluctuations in performance on classes 8 and 11 
again indicate dependence on the identity of the training pat­
terns. With INTEGER array classifiers, the "optimum training 
sequence" gives better performance than a random training 
sequence for classes 3, 5, 6, 7, 10, and 11. 
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Table V. DLN Performance by Functional Group Category: LOGICAL Memory Array" 

Number of patterns in training set 

Category 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

64 

0.67 

0.12 

0.05 

0.28 

0.04 

0.06 

0.62 

0.21 

0.20 

0.14 

0.31 

128 

0.69 

0.31 

0.11 

0.24 

0.29 

0.04 

0.77 

0.14 

0.28 

0.23 

0.50 

144 

0.69 
[0.54] 
0.30 

[0.24] 
0.08 

[0.08] 
0.23 

[0.11] 
0.30 

[0.42] 
0.04 

[0.01] 
0.79 

[0.87] 
0.13 

[0.24] 
0.29 

[0.07] 
0.17 

[0.15] 
0.51 

[0.68] 

302 

0.63 

0.23 

0.18 

0.25 

0.39 

0.06 

0.74 

0.18 

0.23 

0.12 

0.46 

467 

0.59 
[0.52] 
0.18 

[0.10] 
0.20 

[0.14] 
0.12 

[0.09] 
0.36 

[0.50] 
0.02 

[0.07] 
0.75 

[0.77] 
0.25 

[0.15] 
0.25 

[0.05] 
0.12 

[0.29] 
0.29 
[0.87] 

604 

0.57 

0.16 

0.17 

0.13 

0.32 

0.04 

0.67 

0.15 

0.08 

0.13 

0.47 

927 

0.50 

b 

0.05 

0.08 

0.29 

0.01 

0.67 

0.25 

0.07 

0.25 

0.45 

" Values given are figures of merit for random training sequence; values in brackets are for "optimum training sequence". * No patterns 
in this category were left in the test set after training with 927 patterns. 

Table VI. DLN Performance by Functional Group Category: INTEGER Memory Array0 

Category 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

64 

0.10 

0.004 

0.13 

0.18 

0.20 

0.02 

0.24 

0.10 

0.42 

0.21 

0.41 

128 

0.32 

0.18 

0.16 

0.25 

0.37 

0.08 

0.36 

0.12 

0.43 

0.25 

0.55 

144 

0.31 
[0.24] 
0.08 

[0.001] 
0.17 

[0.02] 
0.26 

[0.01] 
0.38 

[0.25] 
0.09 

[0.05] 
0.68 

[0.65] 
0.08 

[0.09] 
0.39 

[0.21] 
0.20 

[0.13] 
0.57 

[0.56] 

302 

0.50 

0.42 

0.07 

0.30 

0.46 

0.13 

0.76 

0.24 

0.34 

0.22 

0.61 

467 

0.61 
[0.54] 
0.39 

[0.11] 
0.14 

[0.16] 
0.32 

[0.17] 
0.51 

[0.55] 
0.05 

[0.06] 
0.67 

[0.87] 
0.30 

[0.09] 
0.34 

[0.33] 
0.22 

[0.30] 
0.58 

[0.82] 

604 

0.68 

0.43 

0.08 

0.28 

0.75 

0.04 

0.72 

0.20 

0.26 

0.15 

0.52 

927 

0.66 

b 

0.05 

0.34 

0.70 

0.00 

0.72 

0.19 

0.22 

0.19 

0.76 

" Values given are figures of merit for random training sequence; values in brackets are for "optimum training sequence". * No patterns 
in this category were left in the test set after training with 927 patterns. 

Performance Comparison: DLN and Linear Discriminant 
Classifiers 

The question of the comparative performance of these DLN 
classifiers and the more familiar linear discriminant classifiers 
naturally arises. The DLN classifier operates as a multicate-
gory classifier, assigning each pattern to one of the 11 cate­
gories, while a linear discriminant function simply effects a 
binary classification (class member or nonmember). None­
theless, we can compare the two classifier types by examining 
the performance of a DLN classifier on individual categories 
and comparing the performance with that of linear discrimi­

nant functions trained for discrimination of the same catego­
ries. 

In anticipation of this comparison, we have employed the 
same 1252 spectrum data set for the training and testing both 
of the DLN classifiers described here and of several sets of 
linear discriminant classifiers (weight vectors), the develop­
ment of which is described elsewhere.17 These linear discri­
minant classifiers were developed using error correction 
feedback with various numbers of features by simplex opti­
mization of weight vectors derived from error correction 
feedback and by 60-feature simplex pattern recognition. Since 
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Table VII. Comparative Performance by Functional Group Category of Best Linear Discriminant Classifiers with Best DLN Classifiers 

Category 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

P(JlD 

0.92 
0.87 
0.77 
0.82 
0.92 
0.71 
0.93 
0.76 
0.95 
0.73 
0.88 

Best linear discriminant 

P(n|2) 

0.95 
0.96 
0.85 
0.89 
0.95 
0.93 
0.95 
0.87 
0.94 
0.95 
0.97 

A3ave 

M 

0.63 (20-SIM)" 
0.50 (60-LLM) 
0.21 (60-LLM) 
0.34 (60-LLM) 
0.53 (20-SIM) 
0.25 (60-SIM) 
0.55 (20-SIM) 
0.23 (25-SIM) 
0.57 (60-LLM) 
0.32 (60-LLM) 
0.49 (60-LLM) 

= 0.42 

Best DLN (LOGICAL) 

P(JlD 

0.98 
0.55 
0.32 
0.83 
0.94 
0.16 
0.97 
0.76 
0.61 
1.00 
1.00 

p(n|2) M 

0.93 0.69 
0.98 0.31 
0.99 0.20 
0.82 0.28 
0.93 0.50 
0.99 0.07 
0.99 0.87 
0.86 0.25 
0.95 0.29 
0.73 0.29 
0.99 0.87 

Mave = 0.42 

Best DLN (INTEGE 

P(JlD P(n|2) 

0.84 
0.67 
0.52 
0.92 
0.89 
0.17 
0.95 
0.46 
0.74 
0.54 
1.00 

0.99 
0.98 
0.93 
0.78 
0.99 
1.00 
0.997 
0.99 
0.96 
0.98 
0.99 

Mave = 0.47 

R) 

M 

0.68 
0.43 
0.17 
0.34 
0.75 
0.13 
0.87 
0.30 
0.43 
0.30 
0.82 

a The number of features and method used to develop the discriminant. SIM is simplex and LLM is linear learning machine (error correction 
feedback) method. 

there is no reason why all the classifiers in an integrated pattern 
recognition system need all have been developed by the same 
method, we have chosen to compare, for each functional group 
category, the best linear discriminant classifier (from among 
those reported in ref 17) with the best LOGICAL array-based 
and INTEGER array-based DLN classifiers. This comparison 
is shown in Table VII. The two types of DLN classifier must 
be reported separately because LOGICAL memory array 
templates cannot be combined with INTEGER array templates 
in a single classifier network. For completeness, both the fig­
ures of merit, M, and the class conditional probabilities (pre­
dictive abilities on class members and nonmembers) are in­
cluded in Table VII. 

An interesting comparison results if we consider the linear 
discriminant and DLN classifiers to have "comparable" per­
formance if their figures of merit differ by no more than 0.05. 
With this somewhat arbitrary definition, we see from Table 
VII that the LOGICAL array-based digital learning network 
gives performance comparable to the linear discriminant 
classifier in four cases (categories 3, 5, 8, and 10), superior 
performance to the linear discriminant in three cases (cate­
gories 1, 7, and 11), and worse performance in four cases 
(categories 2, 4, 6, and 9). Comparison of the INTEGER 
array-based DLN classifiers with the linear discriminant 
classifiers shows that the DLN classifier gives performance 
comparable to the linear discriminant in four cases (categories 
1,3,4, and 10), superior performance to the linear discriminant 
in four cases (categories 5, 7, 8, and 11), and worse perfor­
mance in three cases (categories 2,6, and 9). There is thus no 
clear-cut overall superiority of one classifier type over the other. 
For certain categories, such as 7 and 11, the DLN classifier 
seems to have a distinct advantage. For other categories, such 
as 2 and 9, the linear discriminant gives decidedly superior 
results. It is interesting to note that the average figures of merit 
for the three classifier types are very nearly the same (Mave = 
0.42 for the linear discriminant classifiers; Mave = 0.42 for the 
LOGICAL array-based DLN classifiers; and Mave = 0.47 for 
the INTEGER array-based DLN classifiers). 

It is concluded that classifiers based on adaptive digital 
learning networks as we have described and implemented them 
give performance which is, in comparison with binary linear 
discriminant functions developed by error correction feedback 
and simplex optimization, neither better nor worse on the av­
erage. It appears that, for certain categories of functional 
groups or for certain situations (as, for example, when few 
training patterns are available), the digital learning network 
classifiers may offer advantages. 

Figure 2. 8-Bit digital learning element. 

Summary 

Experiments with a large and general data set using objec­
tive performance measures have indicated that the training of 
an adaptive digital learning network classifier cannot be un­
dertaken in a cavalier fashion. The subsequent performance 
of such classifiers was very sensitive to the makeup of the 
training set with regard both to the identities of the training 
patterns and the number of training patterns employed. Par­
ticularly, the problem of overtraining was severe and neither 
the "optimum training sequence" strategy nor the use of an 
INTEGER memory array could be depended upon to yield an 
optimum classifier; these results do not, however, preclude the 
possibility of inventing an a priori strategy which would pro­
duce superior DLN classifiers. At best, without resorting to 
reducing the size of the data set or modifying the category 
definitions, the performance we were able to achieve (measured 
in terms of percent correct prediction) was far below that which 
was reported by Stonham and co-workers on a smaller and 
probably more carefully selected data set. Nonetheless, digital 
learning network classifiers gave performance comparable with 
that of linear discriminant functions and may offer advantages 
in certain situations. 
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Appendix A 

The Digital Learning Network Algorithm. The basic unit of 
the n-tuple learning machine as described by Stonham and 
co-workers7'8 is the "digital learning element", which may be 
thought of as a storage register (Figure 2). This storage register 
is associated with a randomly chosen group of n pattern ele­
ments from the pattern being presented to the learning ma­
chine for training or for recognition/prediction; this group is 
an «-tuple subpattern. The number of storage locations in the 
storage register is 2", where n is the number of pattern ele­
ments in the «-tuple; thus, 3-tuple sampling requires a 23 = 8 
bit register. 
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The patterns used with this method are binary patterns. 
Thus, in any n-tuple subpattern there are 2" possible config­
urations; for a 3-tuple, these configurations are (000), (001), 
(010), . . . . , (111). The configuration or bit pattern of the 
n-tuple subpattern is used to address one of the 2" locations 
in the digital learning element or storage register. In the 
training stage, a " 1 " is written into the bit position addressed 
by the n-tuple subpattern. In the recognition/prediction stage, 
the bit position addressed is read rather than written. 

A "digital learning network" consists of a group of digital 
learning elements. The number of learning elements used in 
the network will depend on the n-tuple value (n), the number 
of pattern features being examined, and the sampling redun­
dancy desired. For example, if 90 pattern features are to be 
subjected to 3-tuple sampling with no feature being sampled 
twice, then 30 eight-bit learning elements will be required to 
make a learning network. One learning network is prepared 
for each category of patterns to be classified. 

To train a digital learning network for a particular category, 
a pattern belonging to that category is presented to the net­
work, which has been initialized to contain all "0" 's. Each 
learning element in the learning network is associated with its 
own n-tuple subpattern in the pattern being studied and the 
bit pattern in that n-tuple subpattern addresses just one of the 
2" bit positions in the learning element. In each location so 
addressed, a " 1 " is now written. Now, there will be just one " 1 " 
in each learning element in the network. Further training 
proceeds by presenting to the network more patterns from the 
given category. 

When recognition of a pattern is desired, the pattern is 
presented to the network just as for training: the n-tuple sub-
patterns are used to address locations in the learning elements 
comprising the learning network. However, instead of writing 
into the memory array, we now read the contents of the loca­
tions being addressed and add up these values. Any n-tuple 
subpattern which was present in a training pattern will thus 
address a location which had been written with a " 1 " during 
training; n-tuple subpatterns which were not present in any 
training pattern will address locations which are unchanged 
from their initial "0" value. 

Thus, if a pattern which was used for training is presented 
for recognition, all the memory locations addressed by its n-
tuple subpatterns will have been previously set to " 1 " 's during 
training; and, when the addressed contents are summed, the 
sum will be exactly equal to the number of learning elements 
in the network. This is the maximum "score" or response that 
a pattern can achieve. A pattern containing some n-tuple 
subpatterns not encountered during the training of the network 
will have a response less than the maximum. 

Multicategory classification is achieved by submitting an 
unknown pattern to various trained learning networks, each 
network representing one category. The network with which 
the pattern achieves the highest response gives the class identity 
of the pattern. 

In our modification employing INTEGER memory arrays, 
each storage location in each digital learning element is capable 
of storing an integer. The contents of a particular location are 
incremented each time that location is addressed by a sub-
pattern in a training spectrum. Since this procedure makes the 
values in the memory locations in a template dependent on the 
number of patterns used to train that template, it is necessary 
to compensate for the varied amounts of training received by 
the different templates. This was accomplished following 
training by multiplying each template by a scale factor, 
"max/"/, where nmax is the number of patterns in the most 
populous training set and n,- is the number of patterns in the 
set being scaled. Further, since the subpattern (0000) is the 
most frequently encountered but carries the least information,7 

the contents of the storage locations addressed by that sub-

pattern were not utilized in the recognition or predi 
cess when INTEGER memory arrays were used. 

Appendix B 

DLN PROGRAM FLOW 

START 

GENERATE RANDOM LINKAGES 
(4:1 MAPPING, 256 FEATURES, 

128 LEARNING ELEMENTS, EACH 

FEATURE MAPPED TO 2 ELEMENTS.) 

"TRAIN" LEARNING ELEMENTS 

USING MULTICATEGORY 

TRAINING SET, 

NORMALIZE INTEGER LEARNING 

ELEMENTS FOR EACH CLASS. 

DO PREDICTIONS ON 

"TEST" SET, 

REPORT ALL RESULTS 

TO USER. 

STOP, 

GENERATION OF 

RANDOM LINKAGES: 

START 

GENERATE RANDOM 

NUMBER, 1 - 256 

"LINK THIS FEATURE 

TO A LEARNING 

ELEMENT 
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TRAINING PROCESS: 

©-

j£. 
•PREDICTION ON TEST SET: 

NORMALIZE 
ALL LEARNING ELEMENTS 

TO ZERO, 

CD" 

READ IN 
TRAINING PATTERN, , 

FOR THE A'TH LEARNING ELEMENT: 

LOOK UP LINKAGES TO 

4 FEATURES USING LINKAGE 

TABLE PREVIOUSLY GENERATED 

I 
CALCULATE ADDRESS USING 

THESE 4 BINARY FEATURES: 

ADDRESS = (8*1) + (4*J) + (2-K) + L) + 1 
WHERE IJ,K & L REPRESENT THE 4 BINARY 

FEATURES "LINKED" TO THIS LEARNING 

ELEMENT, AND ARE EITHER O OR 1. 

"SET" THE "BIT" CORRESPONDING TO THIS 
ADDRESS IN THE I 1TH LEARNING ELEMENT 
FOR THE CLASS* OF THIS TRAINING PATTERN 

( T ) - NO* 

(D-YES 

"THERE ARE 128 IDENTICAL 

LEARNING ELEMENTS FOR 

EACH CLASS OF PATTERNS. 

SL 

7151 

<? 
READ IN TEST PATTERN 

FOR EACH CLASS: 
FOR EACH LEARNING ELEMENT: 
LOOK UP LINKAGES TO 4 

FEATURES USING LINKAGE ARRAY, 

CALCULATE ADDRESS AS FOR 

TRAINING PROCESS, USING THESE 

4 BINARY FEATURES. 

FIND PREDICTED CLASS FOR TEST 

PATTERN, WHICH IS CLASS WHOSE 
LEARNING ELEMENTS GAVE THE 

HIGHEST RESPONSE, 

NORMALIZATION: * 

FIND CLASS 

WITH LARGEST 
NUMBER OF PATTERNS 

FOR ALL REMAINING 
CLASSES, MULTIPLY ALL 
"BITS" OF EACH LEARNING 
ELEMENT BY FACTOR -

FACTOR = (LARGEST NO. OF 

PATTERNS FOR ANY CLASS)/ 
(NO. OF PATTERNS FOR 

THIS CLASS) 

V 
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